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Abstract—The objective of this paper is to study the use of a de-
cision tree classifier and multiscale texture measures to extract the-
matic information on the tropical vegetation cover from the Global
Rain Forest Mapping (GRFM) JERS-1 SAR mosaics. We focus our
study on a coastal region of Gabon, which has a variety of land
cover types common to most tropical regions. A decision tree clas-
sifier does not assume a particular probability density distribution
of the input data, and is thus well adapted for SAR image classifica-
tion. A total of seven features, including wavelet-based multiscale
texture measures (at scales of 200, 400, and 800 m) and multiscale
multitemporal amplitude data (two dates at scales 100 and 400 m),
are used to discriminate the land cover classes of interest. Among
these layers, the best features for separating classes are found by
constructing exploratory decision trees from various feature com-
binations. The decision tree structure stability is then investigated
by interchanging the role of the training samples for decision tree
growth and testing. We show that the construction of exploratory
decision trees can improve the classification results. The analysis
also proves that the radar backscatter amplitude is important for
separating basic land cover categories such as savannas, forests,
and flooded vegetation. Texture is found to be useful for refining
flooded vegetation classes. Temporal information from SAR im-
ages of two different dates is explicitly used in the decision tree
structure to identify swamps and temporarily flooded vegetation.

Index Terms—Decision tree, forest, multiscale, synthetic aper-
ture radar (SAR).

I. INTRODUCTION

I N RECENT years, there has been a growing interest in the
use of synthetic aperture radar (SAR) data in remote sensing

for applications ranging from land cover mapping to change de-
tection. In particular, remote sensing using SAR data has the
potential of becoming the most practical method for mapping
and monitoring land cover over the tropics, where continuous
cloud cover hinders optical imagery [1]–[6]. For these applica-
tions, it is important to develop tools to obtain useful thematic
information from radar data in terms of landscape features and
patterns. In this paper, we use a decision rule approach for clas-
sification of SAR data that exploits multiscale texture features
of SAR imagery.
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The backscatter spatial statistics are given for a specific scale
and depend on the distribution of scattering elements on the
imaged surface. Multiscale texture fully exploits the informa-
tion carried by scale variations in SAR imagery. It is known
that texture measures derived from SAR data often do not
follow a normal distribution [7], [8]. As a result, classification
approaches such as Bayesian maximum likelihood estimation
(MLE), which assume a normal distribution of data, are not
suitable for SAR image classification based on a feature space
comprising texture measures. Theoretically, techniques that
do not rely on the statistical distribution of the image data
are more suitable for SAR multiscale classification. Decision
tree classifiers are among those techniques and have been
successfully applied to remote sensing data [9]–[12].

We demonstrate the application of the decision tree classifier
with multiscale texture features in a test case based on Japanese
Earth Resource Satellite (JERS-1) L-band SAR data acquired
over tropical forests. In particular, we will assess the classifica-
tion performance and investigate feature contributions and fea-
ture relations as inferred from the decision tree structure.

The present investigation is carried out in the context of the
Global Rain Forest Mapping Project (GRFM). The project was
initiated in late 1995 by the National Agency for Space Devel-
opment of Japan (NASDA), Tokyo, Japan. Postprocessing and
compilation of the GRFM Central Africa mosaic was performed
at the European Commission Joint Research Center, Ispra, Italy,
within a collaboration agreement with NASDA [13]–[15]. The
100 m resolution GRFM data sets are currently available to in-
terested users. One of the main objectives of GRFM is to assess
the potential of JERS-1 SAR data for mapping the vegetation
cover and monitoring land cover changes in the tropics. The-
matic maps derived from JERS-1 data over Central Africa will
be extremely valuable given the difficulty in this region of get-
ting reliable and spatially explicit data or survey information on
the status of vegetation cover.

In this paper, we focus on the classification methodology and
analyze the performance of the classifier over a small area in
coastal Gabon. In Section II, we describe the study area and
the characteristics of remote sensing data. In Section III, the
classifier is presented with a brief introduction to the multiscale
texture maps. In Section IV, we discuss the training data set and
the application of classifier on the image data. In Section V, the
contribution of the features and the stability of the classifier are
examined using the decision tree structure. Finally, we analyze
and verify the results of the classifier.

0196–2892/00$10.00 © 2000 IEEE
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II. DATA AND STUDY AREA

We use a reduced data set extracted from two GRFM mo-
saics of JERS-1 SAR images covering the entire Central Africa
[16], [13]. The acquisition dates of the images, February and
November 1996, correspond to the high and low water seasons
of the Congo River respectively. The GRFM Africa mosaics are
derived from Level 2.1 NASDA high resolution and georefer-
enced JERS-1 products (3-look, 12.5 m pixel spacing in both
azimuth and range). In this study, we use the Africa mosaic base-
line product with 100 meter resolution [13], [8]. The 100 m am-
plitude backscatter images were generated by low-pass filtering
and decimation from the high resolution NASDA products. The
downsampling process is based on a multiresolution decompo-
sition where the scaling function is a cubic spline polynomial.

All data is reduced to bytes for storage and processing pur-
poses. We used amplitude (square-root of intensity) instead of
intensity because: 1) the histogram conserves a larger dynamic
range of bytes for medium backscatter targets, such as forest,
which are the most interesting targets in out thematic context;
and 2) intensity enhances high backscatter targets (e.g. urban
areas and floods), while a logarithm representation enhances
low backscatter targets (e.g. calm waters and savannas).

The study area covers a region on the western coast of Gabon
in Central Africa (Fig. 1). The region extends from 05’ 19” S
to 1 53’ 50” S latitude and 8E to 10 52’ 13” E longitude and
includes a major portion of the Ogooué River basin along the
coast of Gabon. The Ogooué River originates in the mountain
ranges of northern Lékoumou in Congo and crosses a variety
of landscapes from grassland and woody savannas to evergreen
dense forests. Along the coast, it creates a basin with a variety of
floodplain vegetation types and landscapes suitable for fisheries
and agriculture. The eastern portion of the study area has gently
sloped hills. Along the Ogooué basin in the west, the landscape
is flat, resulting in areas of very slow drainage and creating small
wet and sometimes inundated pockets along the river and coast.

In order to identify training classes for the classifier, we used
land cover maps provided by the Ministère des eaux et forêts
et du reboisement (LCMG) (Ministry of Water and Forests and
Reforestation). We also used a variety of field data collected by
us and our collaborators during field experiments carried out
in 1997 (personal communication with Chris Wilks and Lee
White). The main vegetation categories in the region are as fol-
lows.

• Forest: The forest category is divided into two classes:
open secondary and old secondary forests. The open sec-
ondary forests have a relatively low backscatter in the
image (with respect to old secondary). These forests are
more than ten years old with fast growing tree species that
often create a low and open forest canopy (over 50% of
the canopy area is open to light). In the classification pro-
cedure we refer to this class as “Open forest” (Open). On
the other hand, old secondary forest, which is the domi-
nant type in the region, has higher radar backscatter values
than open secondary and appears with different textures.
These forests have a closed canopy. A portion of the old
secondary forests in the region contain the Okoume trees,
which are often logged. There is primary forest in the re-

(a)

(b)

Fig. 1. (a) Amplitude SAR image of the study site in Gabon. The image is an
extract of the GRFM mosaic with 100 m resolution. (b) Wavelet-based texture
map of the region at scale 400 m.

gion often found near the mountains in the east. However,
primary forests are very similar to old secondary forest
both in phenological terms and in the radar image. Thus,
the old secondary and primary forest are combined in the
“forest” class (For).

• Savannas: We separate the savannas into two classes:
“Grass Savanna” (Sav) and “Woody Savanna” (Woo).
The latter is not identified on the available land cover
map. However, the existence of this class is documented
by ground surveys. The Woody Savanna has seasonal
characteristics and can also host extensive fire events.
These facts are reflected in relative changes between the
backscatter values of the two acquisition dates.

• Floodplains: We chose five land cover types for flood-
plains: “Permanently” (Perm) flooded and “Temporarily”
flooded woody vegetation (Tmp), and “Low Mangroves”
(Mang), “Swamp vegetation” (Sw), and “Raphia” (Pal-
maceae) (Raph). The flooded woody vegetation consists
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of forests that are inundated during both acquisition dates
or only in the high water image. The Low Mangroves are
located along the coast and inland along the river, and are
primarily Black Mangroves (Avicennia germinans). The
plants are short and dense and usually cover the region like
a carpet along the intertidal zones. “Swamp vegetation”
(Sw) refers to a variety of floodplain vegetation ranging
from low grass and shrubs to low density woody plants
that are waterlogged for most of the year. “Raphia” (Pal-
maceae) (Raph) forests are scattered primarily along lake
edges and river basins far from the coast.

• Urban: The “Urban” class (Urb) is easily distinguished on
the SAR images due to the presence of corner reflectors.
The two major urban areas in the image are the city of Port
Gentil, at the Baje of Cap Lopez and the city of Lambaréné
along the Ogooué River.

III. CLASSIFICATION METHOD

A. The Decision Tree Algorithm

The decision tree algorithm used in this paper is based on the
algorithm described in [17]. The decision tree classifier is a set
of hierarchical rules which are successively applied to the input
data. Those rules are thresholds used to split the data into two
groups (binary splits). Each split (also called node) is such that
the descendant nodes contain more homogeneous data samples
(i.e., the nodes are purer in terms of classes). Many layers (fea-
tures) can be input into the decision tree to refine class descrip-
tion. A split is chosen because of its ability to render the nodes
purer based on a purity measure and can be determined by
any single feature.

Decision tree classifiers have been successfully applied to re-
mote sensing data in the past [10], [11], [18]. As the decision
tree approach does not rely on anya priori statistical assump-
tion, it is suitable for classifying SAR image data. Moreover,
decision tree rules are explicit and allow for identification of
features which are relevant to distinguish specific classes. Thus,
the analysis is reduced to the most useful layers. The structure
of the decision tree can also reveal hierarchical and nonlinear
relationships among input layers. These relationships often re-
sult in a given class being described by various terminal nodes.
Terminal nodes are the final decisions, which assign a sample

to class . The variable is a feature vector describing one
sample from the input population.

The decision tree algorithm is supervised because it relies on
training samples to grow. A set of independent variable

with a dependent variable(the label or class) is input into
the decision tree growing algorithm. The split is chosen to max-
imize the reduction of impurity ( ) (or cost) of the parent
node with respect to the impurity of its child nodes such that

(1)

Variables and are the total proportions of samples in node
that reach into child nodesand . The optimization of the im-
purity is performed by Gini criterion. This criterion was shown
to be generally efficient and can also be shown to minimize the

resubstitution estimate [defined in (4)] for the minimum
square error [17, p. 124]. The criterion is defined as

(2)

It uses a rule that assigns a samplerandomly selected from
node to class with probability . This probability is

(3)

where is the a priori probability for class , and and
are the number of classsamples in and node

, respectively. In the absence of anya priori information about
the class distribution, is chosen to be equal for all classes.
However, in principle, could be used as a class weight to
favor classification for given classes. In our case, all classes are
equally important. Note that the sum overin (2) allows for a
global decision that emphasizes the purity of the groups rather
than the purity of an individual class. In theory, the decision tree
can grow indefinitely until all classes are separated. This process
can lead to a very large decision tree (eventually resulting in one
sample in each terminal node). To circumvent this problem, we
will grow a manageable size decision tree (nine successive splits
or levels), which results in 2terminal nodes. The size of this
initial decision tree is further reduced by the “pruning” process.

The pruning process consists in eliminating the inefficient (or
weak) branches of the decision tree. The pruning is based on the
cost-complexity function of nonterminal node [17].
The function is defined as , with

, the resubstitution estimate of the set of terminal nodes
of subtree under . takes into account the number
of terminal nodes under , which characterizes the size of

. The variable may vary continuously. However, a decision
tree is finite, and the decision tree that minimizes
is optimum until some value is reached. Then, is as
large as . That is, the cost complexity of
node itself. At this point, only node is kept as a terminal
node since its children are of the same complexity. The weakest
nonterminal node is the one with minimum

with resubstitution estimate

and

(4)

where is the probability that any sample fall in node. The
weakest node is one with many terminal nodes and with
a low decrease in impurity with respect to terminal nodes of

. Pruning of the initial decision tree is illustrated in Fig. 2.
It shows how the weakest nodes of the initial decision tree are
iteratively cut ( ) to produce a sequence of subtrees
with different complexities. This sequence is obtained by saving
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(a)

(b)

Fig. 2. (a) Example of a decision treeT . The set of terminal nodes under node
t areT = [2; 3; 4; 5]. (b) Decision treeT � T resulting from the pruning
of decision treeT of its subtreeT , which contains all nodesT . At each node,
a value correponding to the best splits on the input featurei is given (s ). The
branches are denoted byl andh, which correspond sample feature values lower
and higher than thresholdss, respectively.

each decision tree ( ). The optimum-size decision tree is
chosen using an independent testing set of samples of
known classes. The independent samples are input into every
decision tree of sequence and estimates of are cal-
culated as

(5)

which is the proportion of class samples classified as class
using decision tree . The function measures the

overall misclassification rate of decision tree.

The development of the decision tree is influenced by noise,
which causes intraclass variability in the data. We consider the
noise in the data as speckle noise and random distribution of
forest radar scatterers. The effect of noise on decision tree struc-
ture is discussed in [17, p. 155]. Because of noise, sample
is randomly distributed within a class. The main effect is to
randomize the choice of the feature on which to apply a split.
This is caused by a similar decrease in impurity for com-
peting features. We expect that the larger the noise, the tighter
the competition between splits. This competition will mainly
be between redundant (correlated) features. As discussed in [8],
at large scales, the contribution of speckle noise to multiscale
image texture is lower than the contribution of forest structures
contribution. For example, in the GRFM 100 m SAR data over
tropical forest, we expect the forest large scale structures to be
the main cause of intraclass variability. Note that the GRFM mo-
saics have 59 equivalent number of looks [13]. However, in the
high resolution 3-look SAR data, such as the 12.5 m pixel ampli-

tude (square root of intensity) images, the multiplicative noise
(speckle) will contribute significantly [19]. As a result, the intr-
aclass variability is dependent on the class mean backscatter. In
this case, we would expect more split competition and branches
for the high backscatter regions. Speckle filtering would prob-
ably improve results in the high resolution case.

We added two minor tests to the basic binary decision tree
testing algorithm due to overspecialization of the nodes. Two
cases can occur, mainly in late nodes.

1) A node is empty. While using an independent sample
set for testing sequence , some nodes , cre-
ated using , might be empty ( 0) of sam-
ples of .

2) A terminal node changes class label. This change oc-
curs when the class memberships within a ter-
minal node are similar. The initial class label of ,
computed from the growth training set , might
change to when using testing set . That is,

for for
.

In the first case, we estimate the contribution of the father split
of . The misclassification of the subtree

under is computed using samples. Note that
does not contribute to classification of . Thus, could
be pruned from to reduce further complexity. The decision
tree containing node is pruned only if does not improve
significantly the classification accuracy. We arbitrarily chose a
minimum 2% accuracy improvement from alone to terminal
nodes of .

In the second case, we use samples of and
to re-evaluate the misclassification of the subtree

under . The class label that has the largest total
membership in terminal node is
assigned to . Again, a 2% minimum classification accuracy
improvement is required. This correction might allow a split
resulting in one noisy and one pure terminal node instead of
pruning up to the noisy parent node. Finally, the optimum
decision tree is one with the minimum estimate .

B. Multiscale Texture

In addition to the two season radar data, texture images were
used as input to the classifier. The texture images are derived
from radar images by using Mallat’s discrete wavelet transform
(DWT) algorithm [20] without decimation.

DWT has been successfully applied as a texture descriptor
for classification of image data [21]–[24]. The DWT produces
a low resolution approximation of the original image as well as
3 detail images, one for each orientation. Consequently, a tex-
ture map is generated by combining the three orientation detail
images using quadratic addition and normalizing by the low res-
olution approximation. These texture maps are then generated at
200, 400, and 800 m by iterating on the 100 m data and the low
resolution approximations at each scale. At each scale, the tex-
ture maps provide information about the surface heterogeneity
and enhance structures such as edges [25]. For more informa-
tion on texture maps, the reader is referred to [8].
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TABLE I
CLASS DEFINITIONS: THIS TABLE DESCRIBES THECLASS CODES, THE SIZE N OF THE GROWTH TRAINING SAMPLE S , TEST SAMPLE S , AND VALIDATION

SAMPLE S WITH THE DESCRIPTION OFCLASSES. N.B. LCMG IS THE LANDCOVER MAP OF THE “M INISTÈRE DES EAUX ETFORÊTS

ET DU REBOISEMENT” OF GABON

IV. CLASSIFICATION PROCESS

Because the decision tree classifier is a supervised method,
the choice of training data is critical in the process of classifi-
cation. The training areas are based on thea priori knowledge
of the region. In this test case, we have used the vegetation map
of the coastal region of Gabon provided by “Ministère des eaux
et forêts et du reboisement,” and the notes collected during the
1997 field campaign in the region. In choosing the training poly-
gons, we have also used our knowledge of the SAR response to
various surface features. We include expert information because
1) the vegetation map is coarse in scale and has less detailed in-
formation than SAR data, and 2) the map is produced by visually
interpreting aerial photography and optical data. This process
introduces classification errors that are not quantified and there-
fore the map cannot be taken as ground truth with a given confi-
dence. One major discrepancy between the vegetation map and
the thematic interpretation of the SAR data is related to the Tem-
porary and Permanently flooded vegetation along the coast. At
the time of the SAR data acquisition, the inundation patterns
were different from the ones documented in the vegetation map.
Due to the sensitivity of the radar backscatter data to the ground
water status, the inundation patterns captured by the SAR im-
agery are probably reliable. However to be on the safe side, be-
cause of its sensitivity to inundation [26], [27], we have used for
training areas only those areas where both data sets are in agree-
ment. Moreover, in collecting the training data sets, we avoided
those areas that showed discontinuity in the SAR response but
were labeled as one class in the vegetation map. This is primarily
due to changes in land cover and land use during the time be-
tween 1989 (acquisition of the data for the vegetation map) and
1996 (the SAR data take).

Intraclass variability may also appear when choosing the
training data set as a result of the spatial proximity of other
classes. The use of low resolution features increases the number
of mixed pixels. Indeed, low resolution approximations and

texture measures are strongly influenced near edges. As a
result, the near-edge region may be assigned to a wrong class.
While this phenomenon is often neglected in classification,
it becomes important when using relatively large analysis
windows or multiscale analysis. To overcome mixed pixels due
to edges (discontinuity), the training areas included pixels near
and far from the edge. This allows the classifier to use high
resolution images to correct for low resolution mixed pixels if
required.

During the process of classification, we noticed that water
and grassland savanna were not distinguished visually or by the
decision tree classifier Fig. 1. Other studies have also pointed
out this problem when classifying the L-band SAR data [28].
To avoid the misclassification, we used the Digital Chart of the
World to mask the open water bodies in the image. The training
areas were chosen over the ten land classes and are included
in Table I. We chose three sets of data for training, pruning, and
validation ( , , ). The number of pixels in each set is given
in Table I.

After the training set selection, the next step in the classifi-
cation process is the organization of input layers. We generated
a total of seven feature images to be used as input layers to the
classifier as described in Section III. These include

1) low water 100 m data (GRFM mosaic data) (LWHR);
2) high water 100 m data (GRFM mosaic data) (HWHR);
3) low water 400 m low resolution approximation (LWLR);
4) high water 400 m low resolution approximation (HWLR);
5) texture at 200 m (TX200);
6) texture at 400 m (TX400);
7) texture at 800 m (TX800).
We used only the low water texture features, because they are

highly correlated with the high water texture features. The ini-
tial decision tree was arbitrarily limited to a maximum of nine
successive splits (or levels). This is equivalent to 2terminal
nodes and is sufficient to classify all ten classes. We first used
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Fig. 3. Decision tree obtained from seven features. At each node, the best splits is given with the input featurei (s ). The input features are the amplitudes for
100 m low water (i = 0), 400 m. (1) Low water, (2) 400 m high water, (3) 100 m high water, (4) textures at 200 m, (5) 400 m, and (6) 800 m. The branches are
denoted byl andh, which are values lower and higher than thresholds, respectively. The class memberships associated with the terminal nodes of this decision
tree, are tabulated in Table II.

the seven input features: LWHR, HWHR, LWLR, and HWLR
and TX200, TX400, and TX800. The weakness of all nonter-
minal nodes was estimated using (4), and the sequence of pruned
decision trees was created. The sample setis the indepen-
dent sample to test sequence. Finally, the optimum decision
tree was chosen.

The optimum decision tree has 14 terminal nodes. These
nodes represent all ten classes because various nodes may carry
the same class label. The final decision tree for seven features
is shown in Fig. 3. Each terminal nodeof the decision tree is
then identified to the class with largest membership
(see Table II). In Table III, the rows represent terminal nodes
and the columns the classes.

Before analyzing the results, we also built three other deci-
sion trees with various combinations of features. We therefore
produce four classifications using the following feature combi-
nations:

• seven features (LWHR, HWHR, LWLR, HWLR, TX200,
TX400, TX800);

• five features (LWHR, HWHR, TX200, TX400, TX800);
• two features (LWHR, HWHR);
• four features (LWHR, HWHR, LWLR, HWLR).

We refer to these decision trees as T7, T5, T2, and T4, re-
spectively. Each of these decision trees will help us understand
the contribution of features and the decision tree sensitivity to
input layers. The results are shown in terms of confusion matrix
in Table IV. A comparison of the resulting classification maps
is shown in Fig. 4.

V. ANALYSIS AND DISCUSSION

In this section, we discuss the impact of using different fea-
tures on overall and individual classification accuracy. No con-
sistent dependency was found between the number of terminal
nodes versus the number of features ( 14, 25,

17, 20). The fact that T7 is the smallest deci-
sion tree is due to the use of the “good” features as opposed to
the inclusion of all features. As seen in Fig. 3, only features 1,
2, 5, and 6 are used (corresponding for T7 to LWLR, HWLR,
TX400, and TX800, respectively). On the other hand, this does

TABLE II
CLASS MEMBERSHIPS(%) USING SEVEN FEATURES: MEMBERSHIP IS THE

PROPORTION(PERCENT) OF CLASS j (COLUMN) SAMPLES OF BOTH

TRAINING SETSS (j) AND S (j) THAT FALL INTO TERMINAL NODE

T (ROW). THE FEATURES ARE100 M RESOLUTION LOW AND HIGH

WATER AMPLITUDE DATA, 400M RESOLUTION LOW AND HIGH WATER

AMPLITUDE DATA, WITH TEXTURE MAPS AT 200, 400,AND 800M. THE

ASSOCIATEDDECISION TREE ISSHOWN IN FIG. 3

not imply that unused features are “bad” information. As dis-
cussed earlier, competition between splits can be very tight for
a sample set . In fact, a feature is best judged by what can not
be achieved without its use. Comparison of the various decision
trees can give insight into this issue.

The overall misclassification rates (commission error) of the
decision trees are: T7: 16%, T5: 21%, T2: 34%, and for T4:
21%. The use of all features provided the best overall classifi-
cation, because it allowed the decision tree algorithm to choose
the best splits amongst a variety of features. However, some in-
dividual classes are best classified using fewer features. This is
because an early split on one feature might mix classes while
purifying others, in search of the best global solution.

All decision trees provide a high classification rate for the
Urban class and Grass savannas, because of their distinct
backscatter. However, performances differ significantly for
other classes. This demonstrates the importance of feature
choices in the feature space. In the remainder of the section,
we discuss the contribution of the different features for clas-
sification of individual classes. We will also briefly discuss
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TABLE III
CLASS MEMBERSHIPUSING SEVEN FEATURES FOREXPLORATORY DECISION

TREE: MEMBERSHIP IS THEPROPORTION(PERCENT) OF CLASS j (COLUMNS)
SAMPLES OFBOTH TRAINING SETSS (j) AND S (j) THAT FALL INTO

TERMINAL NODET (ROWS). THE FEATURES ARE100M RESOLUTION LOW

AND HIGH WATER AMPLITUDE DATA, 400M RESOLUTION LOW AND HIGH

WATER AMPLITUDE DATA, WITH TEXTURE MAPS AT 200, 400,AND 800M.
THE ASSOCIATEDEXPLORATORY DECISION TREE ISSHOWN IN FIG. 5

the impact of topography on the classification accuracy, the
influence of the training sets, and the problem of validating the
thematic results.

A. Low Resolution Contribution

It is expected that the use of low resolution features will
provide a smoother classification of homogeneous areas. We
did not attempt to reduce speckle using a speckle filter because
we believe that image variation at 100 m is mainly due to
the intrinsic forest texture (GRFM data has 59 equivalent
number of looks). Filters may improve classification and will
be explored in future work. Nonetheless, we chose to use the
available data in its original form. Like texture measures, low
resolution approximations provide information on the spatial
context of a pixel. It will be valuable for classification of
classes whose discrimination is mainly given by radiometry.
However, if the decision tree chooses not to use high resolution
features, the spatial resolution of the output classification will
be coarser.

The overall classification rate improves using LWLR and
HWLR. This is observed comparing T2 (30% misclassification)
with T4 (21%), and T5 (20%) with T7 (17%). From analysis of
Table IV(C) nad (D), one can infer that the main contribution
of using low resolution data is to differentiate the Open Forest
from the Forest class. The classification rate of Open Forest
increases from 19% to 80% (T2 and T4). The improvement
results from the splits being chosen on the low resolution
data where the histogram distributions are thinner. The same
observation holds when comparing T5 and T7, where the
separation between the two forests is improved in the latter
(69–85%).

However, the use of splits on the low resolution data increases
commission errors of Permanently Flooded vegetation class to
the Low Mangroves class. The misclassification is observable
throughout the maps of Fig. 4. Mangroves only grows near the
coast where there is salt water. However, the image filamentary
structure of the Low Mangroves is very similar to flooded fil-
aments often seen along small rivers. This problem could be
partly solved by using geographical information. However, in
our case, only the SAR data is used. Thus, Low Mangroves that
are far from the coast on the classification map should be inter-
preted as Permanently flooded vegetation.

Moreover, Table IV(D) and (A) show that there is a slight
commission error increase of the Woody savanna into the Grass
savanna class by 9%. This is most probably due to mixed pixels.

In T4 and T7, the final classification maps have a spatial res-
olution of 400 m. That is because no splits are chosen on the
high resolution features.

B. Temporal Change

The two GRFM SAR acquisitions are snapshots in time.
Thus, the detected temporal changes correspond to changes
in the time interval of February to November 1996. Temporal
changes should be reflected in the decision tree as a com-
bination of high and low water data. There are two classes
characterized by temporal changes: the Swamp (Sw), and
Temporarily Flooded vegetation (Tmp).

Tmp is classified by a combination of low and high water
amplitude values on all decision trees. The best results are
obtained using LWLR and HWLR. A decisive split on the
T4 and T7 at 132 on LWLR following a split at 124 on
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Fig. 4. Slices of the classified study area in Gabon. From top to bottom: Land cover classification obtained from decision trees T2, T4, T5, T7, T7I, andthe
red–blue composite of high and low water. The classes are Low Mangrove (0), Urb (1), Swamp (2), Permanently Flooded (3), Temporarly Flooded (4), Woody
Savanna (5), Forest (6), Savanna (7), Open Forest (8), and Raphia (9), as defined in Table I.

TABLE IV
CONFUSION MATRICES FORA) T7, B) T5, C) T2, D) T4,

E) T7I, AND F) VALIDATION

HWLR allows for distinction of 77% of Tmp (see Fig. 3).
On the T2 and T5, the classification rates are only of 66%
and 63%. Most of the misclassification occurs with Forest
because of histogram overlap.

The Swamp class is also classified against other flooded
classes by a combination of low and high water data. However,
the high backscatter occurs in the low water image, when
vegetation emerges from the water. The best results are ob-

tained using T4 (91%) and T7 (91%). This is mostly due to the
smoother estimation of the local amplitude provided by LWLR
and HWLR.

Swamp is separated from Tmp by the opposite temporal
trend. The opposite splits in T7 at and that follow

explicitly take into account their respective temporal trend
(Fig. 3).

C. Texture Contribution

Decision trees T5 and T7 show that texture is used as a sec-
ondary feature because it is used late in the decision trees. How-
ever, texture contributes significantly to the discrimination of
flooded vegetation classes such as Raphia, Permanently flooded
vegetation and Low Mangroves. As can be observed in Table
IV(C) and (D), those classes are poorly discriminated without
texture. The main improvement is obtained for Raphia, which
appears as smooth high amplitude regions in the radar images.
As a general trend, Raphia is discriminated from Mangroves by
using texture (for example on T7 mainly the 5split with 82%

4% in terminal node 10).
Using texture in T5 also gave better discrimination of Perma-

nently Flooded vegetation (69%) and Low Mangroves (80%).
However, in T7, Low Mangroves and Permanently Flooded veg-
etation are poorly discriminated (node 11). The reason being
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Fig. 5. Exploratory decision tree grown using testing training samples and pruning using growing samples with seven features. At each node, a value correponding
to the best splits threshold is given with the input featurei (s ). The features are the amplitudes for (0) low water, (1) low resolution low water, (2) low resolution
high water, (3) high water, (4) texture 200 m, (5) 400 m, and (6) 800 m. The branches are denoted byl andh, which are lower and higher values than threshold
s, respectively.

that early splits on the low resolution data have mixed samples
of these classes.

From the previous discussions about feature contribution, we
reach the following main conclusions.

1) The choice of input features is important when we con-
sider classification rate of particular classes.

2) The overall best classification as searched by the Gini
criterion is reached using all features as input.

3) The decision tree neglects information contained in un-
used features. This results in a lower spatial resolution
classification (400 m).

To obtain different results, one could tune in order to favor
a given class. Thus the Gini criterion would give more weight
to purification of a class. A second method would be to build
many decision trees, which would each be specialized in clas-
sification of a given class. However, one needs to use a voting
algorithm to decide on the final class of each pixels [29]. For
this purpose, building of a large number of exploratory decision
trees might improve classification.

D. The Topography

Topography is always an issue in remote sensing and
particularly in SAR images (foreshortening and shadowing).
Without a digital elevation model (DEM), it is not possible
to retrieve the true land cover backscatter. In the Gabon
image (Fig. 1), the east of the image is characterized by very
strong topography induced radiometric and geometric effects.
Mountain areas are mostly classified as Mangroves and Woody
Savanna (see Fig. 4). In the first case, because of the bright
filamentary geomorphology, which is very similar to Low
Mangrove image pattern. In the latter case, the backscatter
is similar to Woody savanna in either HWHR or LWHR.
One of the effects of using low resolution data is to provide
a smoother classification in the medium topography region
located in the east–west center of the image.

E. Stability of the decision tree Structure

In this section, we discuss the issue of sensitivity of decision
tree structure to training set variations induced by the choice

of the training sites. The stability of decision tree structures
was discussed by Breimanet al. [17, p. 155]. In fact, voting
algorithms such as those discussed by Bauer and Kohavi [29]
were introduced to deal with unstable classifiers like decision
trees. However, in this paper, we do not attempt to use voting
algorithms. Instead, we will test a single exploratory decision
tree, built from the same independent training samplesand

. In order to build various training samples, one could have
randomly subsampled and to obtain various correlated
sample distributions or tuned to build a large number of ex-
ploratory decision trees. For this experiment, we simply reverse
the role of the training sets to build the exploratory decision tree.
The exploratory decision tree will be grown with and tested
with .

The competition between splits can be very tight when
growing a decision tree. This often happens when features are
correlated, which is the case for the amplitude images, both
temporal and multiscale. Choosing a different split which had
a similar cost (or reduction on impurity of the nodes) will lead
to a different decision tree evolution [17, p. 156].

A seven feature decision tree (T7I) was grown using,
tested using . The resulting decision tree is shown in Fig. 5
with the corresponding Table III. The land cover classification
is shown in Fig. 6. Because the first split is different in T7I, the
subsequent decision tree topology is also different but with a
similar number of terminal nodes (T7 with 14 nodes and T7I
with 13). The overall performance of T7I is better with 13%
misclassification [see Table 4(E)]. Discrimination of Low Man-
groves, Permanently flooded vegetation and Raphia improved
significantly to 69%, 81% and 81% with lower commission
errors. There is a slight increase of misclassification of Swamp
into the Forest class.

Although the decision tree topology is different, there is con-
sistency in the structure of the decision trees.

1) Temporal variation for Swamps is used for both decision
trees for classification against Forests.

2) Similar splits (T7 at and T7I at ) distinguish
Forests from the Flood classes (Mang, Tmp, Perm, and
Raph).

3) Splits on TX800 classify Raph against Perm.
4) Splits on the TX400 classify Raph against Mang.
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Fig. 6. Classified land cover map of the study area of Gabon using seven features with the exploratory decision tree. The 13 terminal nodes (top right) are labeled
(in colors), with the class (bottom right) with largest membership. This land cover map is associated with the decision tree in Fig. 5 with Terminal node memberships
as of Table III.

5) Combination of high and low water features discriminate
Tmp against other flood classes.

F. Validation of decision tree Classification and Thematic
Comparison

In the previous sections, we have used the decision tree struc-
ture to analyze the contribution and relations of features. We dis-
cussed decision tree performance based on the nominal misclas-
sification, which is using and . To validate the decision tree
classification,other authors have used a finite independent pro-
portion of their training sample set to validate results [9]–[11].
Similarly, we selected a third independent training set. The
training samples were selected in different geographical areas
than and for each class. The set was input into T7I
and the confusion matrix computed [Table IV(F)].

The overall decision tree classification accuracy is 80%,
which is lower than the nominal overall accuracy. Most of the
confusion occurs between the flooded classes such as Raph,
Tmp, and Perm. The best classification results are obtained for
classes with completely different backscatter characteristics,
which are the savannas and Urban classes (i.e., very low and
very bright backscatter). These classes were isolated early

in the decision trees because of their distinctive backscatter.
Forest is slightly mixed with Sw, Tmp, and Open forest.

VI. SUMMARY AND CONCLUSION

The use of a decision tree for classification of GRFM JERS-1
SAR images of tropical forest using multiscale information has
been proposed. We chose ten classes which were in agreement
with the vegetation maps provided by the “Ministère des eaux
et forêts et du reboisement.” The classes were: Low Mangrove,
Urban, Swamp, Temporarily Flooded vegetation, Permanently
Flooded vegetation, Woody Savanna, Forest, Grass savanna,
Open Forest, and Raphia. Three spatially independent training
sample sets were selected for each class. Those sets were used
to grow the initial decision tree, test the pruned sequence and
validate classification. In order to assess the contribution of
the features, we built four decision trees using various feature
combinations.

The main conclusions reached from the dimensionality anal-
ysis of the decision tree are the following.

1) Temporal changes are explicit in the decision tree struc-
ture.
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2) Large scale texture measures are important features for
distinction of flooded vegetation classes such as Perma-
nently Flooded vegetation, Low Mangroves, and Raphia.

3) Categories such as savannas, forests, and flooded veg-
etation are discriminated by their amplitude backscatter
values.

4) The decision tree classifier entirely neglects information
contained in unused features. As a consequence in our
case, the spatial resolution of the classification map is
degraded. A tradeoff between classification accuracy and
spatial resolution must be reached.

We also investigated the stability of the decision tree structure
to training sets. Although a change of the decision tree topology
occurred, the main structures and feature relationships are con-
served. For example, temporal changes in Swamps and Tem-
porarily Flooded vegetation are observed in both the seven fea-
ture decision trees. Moreover, texture refines the discrimination
of flooded classes. However, performance of the decision trees
are slightly different, a fact that suggests that exploratory deci-
sion trees using different training sets should be built.

The decision tree classifier allows the user to interpret each
decision rule and make efficient use of only important features
for the classification. These advantages will be valuable for the-
matic studies based on the GRFM JERS-1 mosaics.
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